Generally, the sampling distribution will be approximately normally distributed if the sample is described by at least one of the following statements. endobj We calculate a z-score as we have done before. The formula for the standard error is related to the formula for standard errors of the individual sampling distributions that we studied in Linking Probability to Statistical Inference. All expected counts of successes and failures are greater than 10. w'd,{U]j|rS|qOVp|mfTLWdL'i2?wyO&a]`OuNPUr/?N. <> Hence the 90% confidence interval for the difference in proportions is - < p1-p2 <. Instead, we use the mean and standard error of the sampling distribution. The test procedure, called the two-proportion z-test, is appropriate when the following conditions are met: The sampling method for each population is simple random sampling. <> Compute a statistic/metric of the drawn sample in Step 1 and save it. Types of Sampling Distribution 1. endobj There is no need to estimate the individual parameters p 1 and p 2, but we can estimate their Fewer than half of Wal-Mart workers are insured under the company plan just 46 percent. Since we add these terms, the standard error of differences is always larger than the standard error in the sampling distributions of individual proportions. Here the female proportion is 2.6 times the size of the male proportion (0.26/0.10 = 2.6). 9.4: Distribution of Differences in Sample Proportions (1 of 5) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. We use a normal model to estimate this probability. Lets suppose the 2009 data came from random samples of 3,000 union workers and 5,000 nonunion workers. These values for z* denote the portion of the standard normal distribution where exactly C percent of the distribution is between -z* and z*. The proportion of males who are depressed is 8/100 = 0.08. the normal distribution require the following two assumptions: 1.The individual observations must be independent. A link to an interactive elements can be found at the bottom of this page. When Is a Normal Model a Good Fit for the Sampling Distribution of Differences in Proportions? The sample proportion is defined as the number of successes observed divided by the total number of observations. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. endobj 3 2 0 obj Our goal in this module is to use proportions to compare categorical data from two populations or two treatments. 3.2.2 Using t-test for difference of the means between two samples. However, before introducing more hypothesis tests, we shall consider a type of statistical analysis which You may assume that the normal distribution applies. The graph will show a normal distribution, and the center will be the mean of the sampling distribution, which is the mean of the entire . Look at the terms under the square roots. More specifically, we use a normal model for the sampling distribution of differences in proportions if the following conditions are met. Here we complete the table to compare the individual sampling distributions for sample proportions to the sampling distribution of differences in sample proportions. The population distribution of paired differences (i.e., the variable d) is normal. Z-test is a statistical hypothesis testing technique which is used to test the null hypothesis in relation to the following given that the population's standard deviation is known and the data belongs to normal distribution:. Hypothesis test. Sample size two proportions - Sample size two proportions is a software program that supports students solve math problems. 0 <>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 14 0 R/Group<>/Tabs/S/StructParents 1>> However, the effect of the FPC will be noticeable if one or both of the population sizes (N's) is small relative to n in the formula above. 3 0 obj We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Large Sample Test for a Proportion c. Large Sample Test for a Difference between two Proportions d. Test for a Mean e. Test for a Difference between two Means (paired and unpaired) f. Chi-Square test for Goodness of Fit, homogeneity of proportions, and independence (one- and two-way tables) g. Test for the Slope of a Least-Squares Regression Line 10 0 obj We will use a simulation to investigate these questions. To estimate the difference between two population proportions with a confidence interval, you can use the Central Limit Theorem when the sample sizes are large . The behavior of p1p2 as an estimator of p1p2 can be determined from its sampling distribution. XTOR%WjSeH`$pmoB;F\xB5pnmP[4AaYFr}?/$V8#@?v`X8-=Y|w?C':j0%clMVk4[N!fGy5&14\#3p1XWXU?B|:7 {[pv7kx3=|6 GhKk6x\BlG&/rN `o]cUxx,WdT S/TZUpoWw\n@aQNY>[/|7=Kxb/2J@wwn^Pgc3w+0 uk 11 0 obj These terms are used to compute the standard errors for the individual sampling distributions of. In Inference for Two Proportions, we learned two inference procedures to draw conclusions about a difference between two population proportions (or about a treatment effect): (1) a confidence interval when our goal is to estimate the difference and (2) a hypothesis test when our goal is to test a claim about the difference.Both types of inference are based on the sampling . Most of us get depressed from time to time. stream So differences in rates larger than 0 + 2(0.00002) = 0.00004 are unusual. Regression Analysis Worksheet Answers.docx. Sample distribution vs. theoretical distribution. Question: hbbd``b` @H0 &@/Lj@&3>` vp The following is an excerpt from a press release on the AFL-CIO website published in October of 2003. But our reasoning is the same. b) Since the 90% confidence interval includes the zero value, we would not reject H0: p1=p2 in a two . In Inference for One Proportion, we learned to estimate and test hypotheses regarding the value of a single population proportion. I discuss how the distribution of the sample proportion is related to the binomial distr. As we learned earlier this means that increases in sample size result in a smaller standard error. <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 612 792] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> It is one of an important . They'll look at the difference between the mean age of each sample (\bar {x}_\text {P}-\bar {x}_\text {S}) (xP xS). This is the same thinking we did in Linking Probability to Statistical Inference. So the sample proportion from Plant B is greater than the proportion from Plant A. Accessibility StatementFor more information contact us atinfo@libretexts.orgor check out our status page at https://status.libretexts.org. In other words, there is more variability in the differences. Now let's think about the standard deviation. Select a confidence level. endobj Sampling. In Distributions of Differences in Sample Proportions, we compared two population proportions by subtracting. Since we are trying to estimate the difference between population proportions, we choose the difference between sample proportions as the sample statistic. To answer this question, we need to see how much variation we can expect in random samples if there is no difference in the rate that serious health problems occur, so we use the sampling distribution of differences in sample proportions. Notice the relationship between standard errors: The students can access the various study materials that are available online, which include previous years' question papers, worksheets and sample papers. . Notice the relationship between the means: Notice the relationship between standard errors: In this module, we sample from two populations of categorical data, and compute sample proportions from each. When I do this I get This makes sense. For instance, if we want to test whether a p-value distribution is uniformly distributed (i.e. 1. Answer: We can view random samples that vary more than 2 standard errors from the mean as unusual. I then compute the difference in proportions, repeat this process 10,000 times, and then find the standard deviation of the resulting distribution of differences. During a debate between Republican presidential candidates in 2011, Michele Bachmann, one of the candidates, implied that the vaccine for HPV is unsafe for children and can cause mental retardation. endobj than .60 (or less than .6429.) 9.8: Distribution of Differences in Sample Proportions (5 of 5) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. { "9.01:_Why_It_Matters-_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.02:_Assignment-_A_Statistical_Investigation_using_Software" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.03:_Introduction_to_Distribution_of_Differences_in_Sample_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.04:_Distribution_of_Differences_in_Sample_Proportions_(1_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.05:_Distribution_of_Differences_in_Sample_Proportions_(2_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.06:_Distribution_of_Differences_in_Sample_Proportions_(3_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.07:_Distribution_of_Differences_in_Sample_Proportions_(4_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.08:_Distribution_of_Differences_in_Sample_Proportions_(5_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.09:_Introduction_to_Estimate_the_Difference_Between_Population_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.10:_Estimate_the_Difference_between_Population_Proportions_(1_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.11:_Estimate_the_Difference_between_Population_Proportions_(2_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.12:_Estimate_the_Difference_between_Population_Proportions_(3_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.13:_Introduction_to_Hypothesis_Test_for_Difference_in_Two_Population_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.14:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(1_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.15:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(2_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.16:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(3_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.17:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(4_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.18:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(5_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.19:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(6_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.20:_Putting_It_Together-_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Types_of_Statistical_Studies_and_Producing_Data" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Summarizing_Data_Graphically_and_Numerically" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Examining_Relationships-_Quantitative_Data" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Nonlinear_Models" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Relationships_in_Categorical_Data_with_Intro_to_Probability" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Probability_and_Probability_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Linking_Probability_to_Statistical_Inference" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Inference_for_One_Proportion" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Inference_for_Means" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Chi-Square_Tests" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Appendix" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 9.8: Distribution of Differences in Sample Proportions (5 of 5), https://stats.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fstats.libretexts.org%2FCourses%2FLumen_Learning%2FBook%253A_Concepts_in_Statistics_(Lumen)%2F09%253A_Inference_for_Two_Proportions%2F9.08%253A_Distribution_of_Differences_in_Sample_Proportions_(5_of_5), \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 9.7: Distribution of Differences in Sample Proportions (4 of 5), 9.9: Introduction to Estimate the Difference Between Population Proportions. Suppose the CDC follows a random sample of 100,000 girls who had the vaccine and a random sample of 200,000 girls who did not have the vaccine. THjjR,)}0BU5rrj'n=VjZzRK%ny(.Mq$>V|6)Y@T -,rH39KZ?)"C?F,KQVG.v4ZC;WsO.{rymoy=$H A. Paired t-test. Its not about the values its about how they are related! When we calculate the z-score, we get approximately 1.39. p, with, hat, on top, start subscript, 1, end subscript, minus, p, with, hat, on top, start subscript, 2, end subscript, mu, start subscript, p, with, hat, on top, start subscript, 1, end subscript, minus, p, with, hat, on top, start subscript, 2, end subscript, end subscript, equals, p, start subscript, 1, end subscript, minus, p, start subscript, 2, end subscript, sigma, start subscript, p, with, hat, on top, start subscript, 1, end subscript, minus, p, with, hat, on top, start subscript, 2, end subscript, end subscript, equals, square root of, start fraction, p, start subscript, 1, end subscript, left parenthesis, 1, minus, p, start subscript, 1, end subscript, right parenthesis, divided by, n, start subscript, 1, end subscript, end fraction, plus, start fraction, p, start subscript, 2, end subscript, left parenthesis, 1, minus, p, start subscript, 2, end subscript, right parenthesis, divided by, n, start subscript, 2, end subscript, end fraction, end square root, left parenthesis, p, with, hat, on top, start subscript, start text, A, end text, end subscript, minus, p, with, hat, on top, start subscript, start text, B, end text, end subscript, right parenthesis, p, with, hat, on top, start subscript, start text, A, end text, end subscript, minus, p, with, hat, on top, start subscript, start text, B, end text, end subscript, left parenthesis, p, with, hat, on top, start subscript, start text, M, end text, end subscript, minus, p, with, hat, on top, start subscript, start text, D, end text, end subscript, right parenthesis, If one or more of these counts is less than. In "Distributions of Differences in Sample Proportions," we compared two population proportions by subtracting. Point estimate: Difference between sample proportions, p . a. to analyze and see if there is a difference between paired scores 48. assumptions of paired samples t-test a. Here "large" means that the population is at least 20 times larger than the size of the sample. measured at interval/ratio level (3) mean score for a population. <> This tutorial explains the following: The motivation for performing a two proportion z-test. 7 0 obj /'80;/Di,Cl-C>OZPhyz. . This is a test of two population proportions. 4 0 obj There is no difference between the sample and the population. Because many patients stay in the hospital for considerably more days, the distribution of length of stay is strongly skewed to the right. Show/Hide Solution . In this article, we'll practice applying what we've learned about sampling distributions for the differences in sample proportions to calculate probabilities of various sample results. Research suggests that teenagers in the United States are particularly vulnerable to depression. 3 0 obj What is the difference between a rational and irrational number? (Recall here that success doesnt mean good and failure doesnt mean bad. For this example, we assume that 45% of infants with a treatment similar to the Abecedarian project will enroll in college compared to 20% in the control group. Requirements: Two normally distributed but independent populations, is known. endobj In one region of the country, the mean length of stay in hospitals is 5.5 days with standard deviation 2.6 days. This is an important question for the CDC to address. The expectation of a sample proportion or average is the corresponding population value. https://assessments.lumenlearning.cosessments/3924, https://assessments.lumenlearning.cosessments/3636. Depression can cause someone to perform poorly in school or work and can destroy relationships between relatives and friends. *gx 3Y\aB6Ona=uc@XpH:f20JI~zR MqQf81KbsE1UbpHs3v&V,HLq9l H>^)`4 )tC5we]/fq$G"kzz4Spk8oE~e,ppsiu4F{_tnZ@z ^&1"6]&#\Sd9{K=L.{L>fGt4>9|BC#wtS@^W For each draw of 140 cases these proportions should hover somewhere in the vicinity of .60 and .6429. We shall be expanding this list as we introduce more hypothesis tests later on. %PDF-1.5 We select a random sample of 50 Wal-Mart employees and 50 employees from other large private firms in our community. Lets assume that 26% of all female teens and 10% of all male teens in the United States are clinically depressed. 5 0 obj Many people get over those feelings rather quickly. Describe the sampling distribution of the difference between two proportions. Scientists and other healthcare professionals immediately produced evidence to refute this claim. When we calculate the z -score, we get approximately 1.39. )&tQI \;rit}|n># p4='6#H|-9``Z{o+:,vRvF^?IR+D4+P \,B:;:QW2*.J0pr^Q~c3ioLN!,tw#Ft$JOpNy%9'=@9~W6_.UZrn%WFjeMs-o3F*eX0)E.We;UVw%.*+>+EuqVjIv{ endobj In each situation we have encountered so far, the distribution of differences between sample proportions appears somewhat normal, but that is not always true. So the z-score is between 1 and 2. That is, the comparison of the number in each group (for example, 25 to 34) If the answer is So simply use no. Research question example. In other words, it's a numerical value that represents standard deviation of the sampling distribution of a statistic for sample mean x or proportion p, difference between two sample means (x 1 - x 2) or proportions (p 1 - p 2) (using either standard deviation or p value) in statistical surveys & experiments. The formula for the z-score is similar to the formulas for z-scores we learned previously. This is the same approach we take here. two sample sizes and estimates of the proportions are n1 = 190 p 1 = 135/190 = 0.7105 n2 = 514 p 2 = 293/514 = 0.5700 The pooled sample proportion is count of successes in both samples combined 135 293 428 0.6080 count of observations in both samples combined 190 514 704 p + ==== + and the z statistic is 12 12 0.7105 0.5700 0.1405 3 . For these people, feelings of depression can have a major impact on their lives. . Sampling distribution for the difference in two proportions Approximately normal Mean is p1 -p2 = true difference in the population proportions Standard deviation of is 1 2 p p 2 2 2 1 1 1 1 2 1 1. 4. stream Now we ask a different question: What is the probability that a daycare center with these sample sizes sees less than a 15% treatment effect with the Abecedarian treatment? endstream Or could the survey results have come from populations with a 0.16 difference in depression rates? If X 1 and X 2 are the means of two samples drawn from two large and independent populations the sampling distribution of the difference between two means will be normal. Sometimes we will have too few data points in a sample to do a meaningful randomization test, also randomization takes more time than doing a t-test. An equation of the confidence interval for the difference between two proportions is computed by combining all . These conditions translate into the following statement: The number of expected successes and failures in both samples must be at least 10. % This is still an impressive difference, but it is 10% less than the effect they had hoped to see. The simulation will randomly select a sample of 64 female teens from a population in which 26% are depressed and a sample of 100 male teens from a population in which 10% are depressed. Empirical Rule Calculator Pixel Normal Calculator. Common Core Mathematics: The Statistics Journey Wendell B. Barnwell II [email protected] Leesville Road High School endobj We use a simulation of the standard normal curve to find the probability. Construct a table that describes the sampling distribution of the sample proportion of girls from two births. % That is, we assume that a high-quality prechool experience will produce a 25% increase in college enrollment. StatKey will bootstrap a confidence interval for a mean, median, standard deviation, proportion, different in two means, difference in two proportions, regression slope, and correlation (Pearson's r). Using this method, the 95% confidence interval is the range of points that cover the middle 95% of bootstrap sampling distribution. The standard error of the differences in sample proportions is. According to another source, the CDC data suggests that serious health problems after vaccination occur at a rate of about 3 in 100,000. ulation success proportions p1 and p2; and the dierence p1 p2 between these observed success proportions is the obvious estimate of dierence p1p2 between the two population success proportions. Is the rate of similar health problems any different for those who dont receive the vaccine? { "9.01:_Why_It_Matters-_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.02:_Assignment-_A_Statistical_Investigation_using_Software" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.03:_Introduction_to_Distribution_of_Differences_in_Sample_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.04:_Distribution_of_Differences_in_Sample_Proportions_(1_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.05:_Distribution_of_Differences_in_Sample_Proportions_(2_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.06:_Distribution_of_Differences_in_Sample_Proportions_(3_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.07:_Distribution_of_Differences_in_Sample_Proportions_(4_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.08:_Distribution_of_Differences_in_Sample_Proportions_(5_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.09:_Introduction_to_Estimate_the_Difference_Between_Population_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.10:_Estimate_the_Difference_between_Population_Proportions_(1_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.11:_Estimate_the_Difference_between_Population_Proportions_(2_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.12:_Estimate_the_Difference_between_Population_Proportions_(3_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.13:_Introduction_to_Hypothesis_Test_for_Difference_in_Two_Population_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.14:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(1_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.15:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(2_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.16:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(3_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.17:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(4_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.18:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(5_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.19:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(6_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.20:_Putting_It_Together-_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Types_of_Statistical_Studies_and_Producing_Data" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Summarizing_Data_Graphically_and_Numerically" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Examining_Relationships-_Quantitative_Data" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Nonlinear_Models" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Relationships_in_Categorical_Data_with_Intro_to_Probability" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Probability_and_Probability_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Linking_Probability_to_Statistical_Inference" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Inference_for_One_Proportion" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Inference_for_Means" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Chi-Square_Tests" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Appendix" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 9.7: Distribution of Differences in Sample Proportions (4 of 5), https://stats.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fstats.libretexts.org%2FCourses%2FLumen_Learning%2FBook%253A_Concepts_in_Statistics_(Lumen)%2F09%253A_Inference_for_Two_Proportions%2F9.07%253A_Distribution_of_Differences_in_Sample_Proportions_(4_of_5), \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 9.6: Distribution of Differences in Sample Proportions (3 of 5), 9.8: Distribution of Differences in Sample Proportions (5 of 5), The Sampling Distribution of Differences in Sample Proportions, status page at https://status.libretexts.org.